BTS Analyses Biologiques 1987

BTS 1 Analyses Biologiques ; Devoir n°03 Année Scolaire 2005/2006 ; Le 12/12/2005

EXERCICE D'ANALYSE:

Partie A:

Soit Q(t) la quantité de substance présente dans le muscle à l'instant t. On suppose que :

$$\frac{dQ}{dt} +2 Q = 0$$

- **1** Intégrer l'équation différentielle (E_0) .
- $oldsymbol{\Theta}$ Soit Q_0 à la quantité de substance injectée dans le muscle à l'instant t=0. Ecrire Q(t) en fonction de Q_0 et t .

Partie B:

Soit F(t) la quantité de substance présente dans le sang à l'instant t. On suppose que :

$$(E_1)$$
: $\frac{dF}{dt} = 2Q - F$

lacktriangle – En utilisant la valeur de Q(t) obtenu déterminée Partie A $oldsymbol{2}$, écrire l'équation différentielle reliant :

 $\frac{dF}{dt}$, F et t

- \bullet Déterminer le réel a pour que la fonction h(x)=a e^{-2t} soit une solution particulière de l'équation différentielle (E₁).
 - **3** Déterminer la solution générale de (E_0) , équation différentielle homogène associée à (E_1) .
 - $oldsymbol{\bullet}$ Déterminer la solution générale de (E_1) .
- **6** On suppose que $F(0) = \grave{a}$ (valeur 0 à l'instant initial). déterminer la solution de vérifiant cette condition.

Partie C:

On suppose que :

$$F(t) = -2 Q_0 \left(e^{-2t} - e^{-t} \right)$$

- $oldsymbol{0}$ Etudier la limite de la fonction F quand t tend vers + ∞ .
- **2** Etudier les variations de la fonction F sur [0, + ∞ [.
- \odot Dans le repère orthonormal (unité = 2 cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées) tracer la courbe représentative de la fonction f.

Partie D:

On considère les cinq points de la courbe d'abscisse t=1, 2, 3, 4, 5.

Déterminer par la méthode des moindres carrés une équation de la droite d'ajustement du nuage de ces cinq points. Cet ajustement est-il justifié ?

	хi	zi = ln (/≬)		ti ^e t i	yi*yi	yi⁴ti	xi	yi
1 1	5,0	3,091	1	25	9,55	15,46	S	22,00
	5,5	3,219		30,25	10,36	17,70	5,5	25,00
	6,0	3,401		36	11,57	20,41	6	30,00
9	6,5	3,638	- 9	42,25	13,23	23,64	6,5	38,00
	7,0	3,871		49	14,99	27,10	7	48,00
	7,5	4,025	1	56,25	16,20	30,19	7,5	56,00
	₿0	4,277		64	18,29	34,21	В	72,00
8 8	е, s	4,443	8	72,25	19,74	37,76	8,5	es,00
	9,0	4,554		81	20,74	40,98	9	95,00
	9,5	4,942		90,25	24,42	46,95	9,5	140,00
Total	72,5	39,5		54,63	15,91	29,44		
Moyenne:	7,3	3,9	1	2,06	0,34	0,83		1
Boart-type:				1,44	0,58			
Droite de régression de y en x :			y= ax + b		r=	0,996406		
	a =	0,403	b =	1,021				