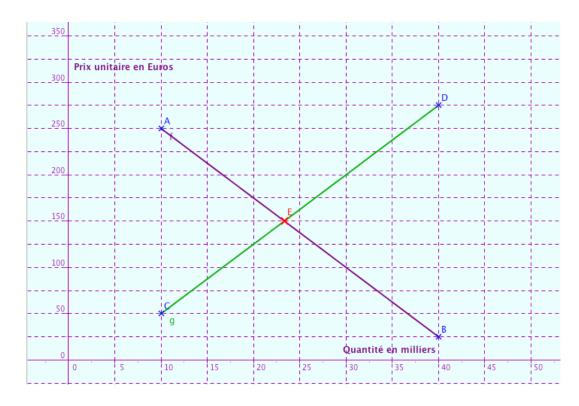
Devoir en classe n°3

Chapitre n°3 page 78-107 ; 2 nde 14 Année scolaire 2006/2007

Exercice n°1: Calcul algébrique:

Résoudre dans l'ensemble des nombres réels chaque inéquation, en précisant l'ensemble des solutions :


$$-5x-7>0; \frac{9x-1}{2}>0; x-3(x+1) \le x-9;$$
$$\frac{1}{2}x-\frac{2x-5}{3} \ge 1; \frac{1}{3}-\frac{x-4}{2} \le \frac{5-3x}{5}$$

Fonctions affines; Le Lundi 19 Novembre 2007

Exercice n°2:

Pour un certain article, la fonction d'offre f et la fonction de demande g sont représentées par les segments de droites ci-dessous.

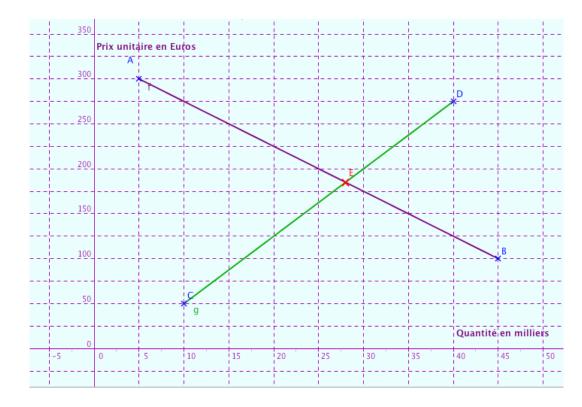
- 1°) Donner les coordonnées des points A,B,C et D;
- 1°) Définir les fonctions f et g : c'est à dire calculer leur expression sous la forme d'une fonction affine f(x)=ax+b, g(x)=a'x+b':
 - 2°) Etablir le tableau de variations des deux fonctions affines ;
- 3°) Déduire le prix d'un article tel que l'offre soit égal à la demande et la quantité d'articles correspondante :

Devoir en classe n°3

Chapitre n°3 page 78-107 ; 2 nde 14 Année scolaire 2006/2007

Exercice n°1: Calcul algébrique:

Résoudre dans l'ensemble des nombres réels chaque inéquation, en précisant l'ensemble des solutions :


$$-7x-5>0; \frac{12x-1}{3}>0; x-4(x+3) \le x-1;$$
$$\frac{1}{3}x-\frac{3x-4}{2} \ge 1; \frac{1}{5}-\frac{x-2}{3} \le \frac{4-5x}{2}$$

Fonctions affines; Le Lundi 19 Novembre 2007

Exercice n°2:

Pour un certain article, la fonction d'offre f et la fonction de demande g sont représentées par les segments de droites ci-dessous.

- 1°) Donner les coordonnées des points A,B,C et D;
- 1°) Définir les fonctions f et g : c' est à dire calculer leur expression sous la forme d'une fonction affine f(x)=ax+b, g(x)=a'x+b':
 - 2°) Etablir le tableau de variations des deux fonctions affines ;
- 3°) Déduire le prix d'un article tel que l'offre soit égal à la demande et la quantité d'articles correspondante :

Devoir en classe n°3

Chapitre n°3 page 78-107 ; 2 nde 14 Année scolaire 2007/2008

Exercice n°3:

Une fonction admet le tableau de variations suivant :

Х	-5	-2	1	4	7
f(x)	-1		2		2
		-3		-1	

- 1°) Recopier et compléter les phrases suivantes ;
- a) Le maximum de f sur [-5; 7] est ...;

Il est atteint pour x = ... ou x = ...;

Donc si $-5 \le x \le 7$ alors f(x) ...;

b) Le minimum de f sur [-5; 7] est ...;

Il est atteint pour x = ...;

Donc si $-5 \le x \le 7$ alors f(x) ...;

- c) En déduire un encadrement de f(x) lorsque $-3 \le x \le 6$.
- 2°) Si x_1 et x_2 sont des nombres réels appartenant à l'intervalle [-5;-2], comparer, en utilisant les variations de f, $f(x_1)$ et $f(x_2)$.
- 3°) Si x_1 et x_2 sont des nombres réels appartenant à l'intervalle [-2; 1], comparer, en utilisant les variations de f , $f(x_1)$ et $f(x_2)$.
 - 4°) A l'aide des variations de f, démontrer que :
 - a) Pour tout réel x tel que $1 \le x \le 4$ alors $-1 \le f(x) \le 2$.
 - b) Pour tout réel x tel que $4 \le x \le 7$ alors $-1 \le f(x) \le 2$.
 - 5°) Construire une courbe pouvant représenter f :
 - 6°) Déterminer le maximum et le minimum de f sur [-5;4];
 - 7°) En déduire un encadrement de f(x) pour $-5 \le x \le 4$;

Fonctions affines; Le Lundi 19 Novembre 2007

Exercice n°4:

On veut étudier la durée t (en heures) d'un parcours effectué à partir de son domicile, par différents moyens de transport, en fonction de la distance d (en kilomètres):

_ une voiture sur autoroute : sa vitesse moyenne est 100 km/h; _ un TGV : sa vitesse moyenne est 250 km/h; mais il faut ajouter une heure à la durée du trajet en train pour le trajet du domicile à la gare ;

_ un avion : sa vitesse moyenne est 800 km/h; mais il faut ajouter trois heure à la durée du vol pour le trajet du domicile à l'aéroport et les démarches d'enregistrement et de contrôle;

- 1°) On a les relations suivantes pour la voiture : t = d/100; pour le TGV : t = 1 + d/250; Déterminer de même t en fonction de d pour l'avion.
- 2°) Cinq heures après le départ du domicile, quelle distance a-t-on parcourue avec chaque moyen de transport?
- 3°) Représenter graphiquement les trois fonctions associées aux trois moyens de transport pour $0 \le d \le 1000$.

Indiquer, sur chaque droite obtenue, le moyen de transport obtenu. Préciser le coefficient directeur de chaque droite.

Devoir en classe n°3 | Chapitre n°3 page 78-107;

Exercice n°3::

Une fonction admet le tableau de variations suivant :

Х	-4	-1	1	4	6
f(x)	3		2		-1
		-1		-3	

- 1°) Recopier et compléter les phrases suivantes ;
- a) Le maximum de f sur [-4;6] est ...;

Il est atteint pour x = ... ou x = ...;

Donc si $-4 \le x \le 6$ alors f(x) ...;

b) Le minimum de f sur [-4; 6] est ...;

Il est atteint pour x = ...;

Donc si $-4 \le x \le 6$ alors f(x) ...;

- c) En déduire un encadrement de f(x) lorsque $-4 \le x \le 6$.
- 2°) Si x_1 et x_2 sont des nombres réels appartenant à l'intervalle [-4;-1], comparer, en utilisant les variations de f , $f(x_1)$ et $f(x_2)$.
- 3°) Si x_1 et x_2 sont des nombres réels appartenant à l'intervalle [-1;1], comparer, en utilisant les variations de f, $f(x_1)$ et $f(x_2)$.
 - 4°) A l'aide des variations de f, démontrer que :
 - a) Pour tout réel x tel que $1 \le x \le 4$ alors $-3 \le f(x) \le 2$.
 - b) Pour tout réel x tel que $4 \le x \le 6$ alors $-3 \le f(x) \le -1$.
 - 5°) Construire une courbe pouvant représenter f :
 - 6°) Déterminer le maximum et le minimum de f sur [-4;4];
 - 7°) En déduire un encadrement de f(x) pour $-4 \le x \le 4$;

Fonctions affines; Le Lundi 19 Novembre 2007

Exercice n°4:

On veut étudier la durée t (en heures) d'un parcours effectué à partir de son domicile, par différents moyens de transport, en fonction de la distance d (en kilomètres):

_ une voiture sur autoroute : sa vitesse moyenne est 100 km/h; _ un TGV : sa vitesse moyenne est 250 km/h; mais il faut ajouter une heure à la durée du trajet en train pour le trajet du domicile à la gare ;

_ un avion : sa vitesse moyenne est 800 km/h; mais il faut ajouter trois heure à la durée du vol pour le trajet du domicile à l'aéroport et les démarches d'enregistrement et de contrôle;

1°) On a les relations suivantes pour la voiture : t = d/100; pour le TGV : t = 1 + d/250; Déterminer de même t en fonction de d pour l'avion.

- 2°) Cinq heures après le départ du domicile, quelle distance a-t-on parcourue avec chaque moyen de transport?
- 3°) Représenter graphiquement les trois fonctions associées aux trois moyens de transport pour $0 \le d \le 1000$.

Indiquer, sur chaque droite obtenue, le moyen de transport obtenu. Préciser le coefficient directeur de chaque droite.